a2 United States Patent

Gu et al.

US009471776B2

US 9,471,776 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) SECURED EXECUTION OF A WEB
APPLICATION

(75) Inventors: Yuan Xiang Gu, Ottawa (CA); Garney

David Adams, Ottawa (CA)
(73)
")

Assignee: Irdeto B.V., Hoofddorp (NL)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

@
(22)

Appl. No.: 14/389,752

PCT Filed: Mar. 30, 2012

(86) PCT No.:

§ 371 (e)(D),
(2), (4) Date:

PCT/CA2012/000297

Jan. 9, 2015

(87) PCT Pub. No.: WO02013/142947

PCT Pub. Date: Oct. 3, 2013

Prior Publication Data

US 2015/0161384 Al Jun. 11, 2015

(65)

Int. C1.
GO6F 21/54
GO6F 21/12

U.S. CL
CPC GO6F 21/54 (2013.01); GO6F 21/125
(2013.01); GOGF 21/128 (2013.01); GOGF
2221/033 (2013.01)

Field of Classification Search

CPC GOG6F 21/52-21/54; GOGF 2221/033;
GOGF 21/10; GOG6F 21/12-21/128

See application file for complete search history.

(51)
(2013.01)
(2013.01)

(52)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

2002/0052965 Al
2005/0021992 Al*

5/2002 Dowling
1/2005 Aidaccoevvveinns GOG6F 21/10
726/26

/‘1———-————# N

2005/0044197 Al* 2/2005 Lai .cooovvviiinnnnnne G06Q 10/10
709/223

2006/0282897 Al 12/2006 Sima et al.

2009/0193497 Al 7/2009 Kikuchi et al.

2011/0138351 Al* 6/2011 Monsifrot GO6F 21/14
717/100

FOREIGN PATENT DOCUMENTS

WO 2010054235 A2 5/2010
WO 2011057393 Al 5/2011
WO WO 2011/057393 Al * 52011 ... GO6F 21/22

OTHER PUBLICATIONS

International Search Report and Written Opinion cited in corre-
sponding International Application No. PCT/CA2012/000297 dated
Dec. 14, 2012.

(Continued)

Primary Examiner — Linglan Edwards
Assistant Examiner — Kevin Bechtel

(74) Attorney, Agent, or Firm — Marc S. Kaufman;
Amardeep S. Grewal; Reed Smith LLP

57 ABSTRACT

Methods and nodes for securing execution of a web appli-
cation by determining that a call dependency from a first to
a second function needs to be protected, adding a Partial
Execution Stub (PES) function comprising code to establish
a communication connection with a trusted module. Meth-
ods and nodes for secured execution of a web application by
invoking a function of the web application, invoking a
Partial Execution Stub (PES) function during execution of
the function of the web application, sending, from the PES
function, a message call with current execution information
to a trusted module and receiving, a verification result from
the trusted module.

27 Claims, 14 Drawing Sheets

ge with N
it execution indo

Non-Mative Execution Environment
Protected Partial

™~ roct e
Sacket) Trustes Modute
lication code axecution stub N v g
sepleRns el | Responee message withid! ‘\
% R \ A Nextexeautioninfo Y ’n
A 164 170 % \
N 1028 © | 20
100
{ h
i Panial exacudion fow map \E H
S ¢
Secured storage in client or trusted 132
remiste storage
k o’
\
\\/\

130

US 9,471,776 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Yang et at, “CORBA: A Platform for Distributed Object Comput-
ing”, Operating Systems Review, vol. 30, No. 2, pp. 4-31, 1996.
Extended European Search Report cited in corresponding European
Application No. 12873189.0 dated Apr. 13, 2016.

Rajan S P et al., “WEAVE: Web Applications Validation Environ-
ment”, Software Engineering—Companion Volume, 2009, ICSE-
Companion 2009, 31st International Conference, IEEE, May 16,
2009.

Partial Supplementary Furopean Search Report cited in correspond-
ing European Application No. 12873189.0 dated Nov. 4, 2015.

* cited by examiner

US 9,471,776 B2

Sheet 1 of 14

Oct. 18, 2016

U.S. Patent

oe, § aanbiy

Feiaichia Lotk sty]

251 BRISNN O TSNy) oBzios pamnes

C ORI MOH BORNOBXS IRIUR

e
0zl -~ 60t

2BZOL
/w : o4 ww / £ o w/ /\/
Tt UBHNUBRS O s 3
\M J Gt wmmmmmé wmcaam@m w Ir 3 i /\/
R & IR HONnIeXE | spon ungemids

M
BPO PRSI L < wmxoﬁ QM feed OB

DA LORODBYS JURING
i ebegss pes umog

s

SO HALT VOISR SABI-UON

US 9,471,776 B2

Sheet 2 of 14

Oct. 18, 2016

U.S. Patent

¢ 2unbig

&

£ Zd v b

Z 2By

&4

A

s 7w WYY QA_FHHM 24

bid

o

U.S. Patent Oct. 18, 2016 Sheet 3 of 14 US 9,471,776 B2

Socket

I S
23

Fipes2

Fipes3

F2pes3
Figure 4

I
\N

Fip
F2p
F3

US 9,471,776 B2

Sheet 4 of 14

Oct. 18, 2016

U.S. Patent

aBriols sowal
PRSI 0 el Ui 8BRI0IS PaInNDeg

(N43d) dew soy uounoexe jeied

|
\

7

0g¢

/r\/ QLs
w\

BIpUBH Hd

¥

wefy Aanoeg

JRUDSH] oG T

(A4}

O UORMOBXE IXON

w) g ——— /

18UIOG

{gsedy g 'dyd)

SINPOR PEIEN3 \
N OInpOR pasnig O§u} UONOBYS WaLNS

Q0%

AN

(e} g aunbiy

-~ ,,

JUSUWLCHALT UOENDENTT SABL-UON 4/

“
'
S
-

| ooty e
Y zsedra p

US 9,471,776 B2

Sheet 5 of 14

Oct. 18, 2016

U.S. Patent

0es

A

-

\.

3

obiriols 9louial

pajsny o a0 Ut ebeicis pemoss

~

(N34} el MOY UCHNoBXS BIlEd

0es

My

JBIpUBH 3o

waly Aunneg

IBUSISI] I9YN08

// SINPOW POISNLL

oﬂm

J

{€)
DJUL UOIINOBKE IXBN

%008

{gsedgd "UZ4)
DU HORNOSNO JWRLNG

00%

{q) ¢ aundi

3%
¢sadzd e dz4
P 4
1 did
7s0dy4 "

U.S. Patent Oct. 18, 2016 Sheet 6 of 14 US 9,471,776 B2

“\\\
S
800

\/\

Flpea?
¥

F2pes3
Y

Figure 5{c}

Fip
F2p
F3

US 9,471,776 B2

Sheet 7 of 14

Oct. 18, 2016

U.S. Patent

0es

AN

- .

afiiols s

paysnuL o sl w obeins painneg

{N43d) deus moy uonnosxa 1eiuey

h

6745

-

JRpUBH Id

(e

wieBy Aumoeg

Ciit UORNOBYS 1RON

JBUEISIT 19Y00S

(BINPOWN DEYsNL

.ﬂ. - mmmmnn,
{geedig g1}

O§Uf UCNNDEXS RIBUNG

{p} o anbiy

- - -

gsady 4

4

~

US 9,471,776 B2

Sheet 8 of 14

Oct. 18, 2016

U.S. Patent

\\

CEISIUL 30 Jusle u obeiols PRIN0Bg

afieicis slowsd

SUCHOUNE PBIST

JBYDNCA AF PUB $ABY HAA

detu MO UORNOSXS JBILBy

)/

S

1

-

N,

SIPUBH Jdo

Jueby anosg

IBUDISIT JOYI0S

SHIDOW Pasiis}

S/

& 2unBiyg

QUi UONBOBXH 1X8N
Hym afesesiy ssuodsay
e R

. 8430y >

P S

%4

Gt UOTINDEXS N0
Y obessawt jer umog

I

.

* (BpodaIsg)
“ qnis eagy vonedddie
o uwpgnosxo gAgp
e Pajas)alg

SUIDBLY JONLEA BAEPH

/

US 9,471,776 B2

Sheet 9 of 14

Oct. 18, 2016

U.S. Patent

\,\ afigiow #olusl //

ROISNI IO JuouD Ui 38eI0Is PAIN0SS
SUCHDUNE PRISNAL 2 aunfiiy

UDNOA A PUE SASH BAS

deul MOy HORNDES PR Y \\

!

" a
Jepugiy 2ORI0G AN0BS

.

sPppuely wondAnap uoﬁmﬁg Sjep s1as perdlnsq - //
fuQiDuUNg UHINIBKS PEN %
SpUEL BUDIOAU; POUIBIN I Cigit LOANSAXS AN fjauogeaey
i abesaaw ssundsay SIS - PUE puRg)
v p—— S 4 uogenddy afienBusy dmpew
- duoseAR OBy
—— RS, wduogeAey ﬁmw porBiod
IBUSIST IBN0D S .
/ \\ 0§ mmww&mu prCAr R
Ui GO SRS Jedng
SINROY PRISTL e SBRSEIU JED UROQ L \\
\.\
seBeusin 3yl UORBRLOIEURL |
* uonsunosues |/ Aey OUUBUATT LM
& &
i i
» uopRsiddy oML ot
. J

US 9,471,776 B2

Sheet 10 of 14

Oct. 18, 2016

U.S. Patent

ov8

o ainfiy

jjeo afesssw oyl O] pegsl
HNPOW PRISNY SUY WO INSes uoneosyuea e Bunsoss

0es

&

SNPOW PBISNI] B O} LONRLLLIOLIU
UOHNDBXS JUBLND Uim [ro sbessow e Bupuss

(ce

4

Y

LoRoUNY (S3d) QNS UCINDEXT jBiLe] & Bunjosw

oig

4

uogeoydde gam e Jo uoiouny B Bupioau

US 9,471,776 B2

Sheet 11 of 14

Oct. 18, 2016

U.S. Patent

& aunfity

UOIOUTY PUODSS B} O UOIOUNY S 9l
wioy Aouspusdsp jjeo e suyep m ydest Acuspuadep
RO UOOLING SY) Wity S8 JO 195 B Dunsisuel

{

pUB ‘UoHIUNY J8IY BUL
L0 UOOUN) ST B4 J0 UOIBOOALL YIIM LOIIOUN} 1834
Sy} WO UOROUNY puoses sy} jo uopesoaw Buneidsl

i

BNPOW PBISIU] ©
LA UORDBULIOD 19300S B YSiqelss 0 spod Buisudwion
vopoung {ST) oMg uonnoexd jeied e buppe

i

056

fff \/
0¥

.,

\

mmm/)
{16

A

pojoanosd ag o) SPesU UOHOUNY PUDDSES BYI 0F UoIoUY
183y 2y woy Aouspuadap fes e jeyy Buuueiep

US 9,471,776 B2

Sheet 12 of 14

Oct. 18, 2016

U.S. Patent

0aot

01 2inbid

/\/ M..w,w.a;//\/
D IOBRSOU0IT teooon. . Lhun Aowepy
,,,,,,,, — e .
¥ ¥

SINPOYY UONBDYLIOA

4 b4

SINPO B UsHIUNY

4 k

SINPOYY BOBLBIU] HIOMION

g~ - 40

SNPOW PRSI

US 9,471,776 B2

Sheet 13 of 14

Oct. 18, 2016

U.S. Patent

0oLt

{1 8inbidg
ggti abit
/\/ /f\/
JORS8D0Id |, SRR \@o&wm&
E-Y

ObLt * w
¥

TN 25
/\/ JNPOYY SoBLIEIL] HIOMIEN

BPON OMIEN

g
IR b

US 9,471,776 B2

Sheet 14 of 14

Oct. 18, 2016

U.S. Patent

00ZL

Z4 oinBid
0sZi i
) A
10883000 e ... #MMED KOsy
0Lzy T T
¥

BNPOP STELBIU] MIOMISN 5

SAAB(] JUBHT

US 9,471,776 B2

1
SECURED EXECUTION OF A WEB
APPLICATION

RELATED APPLICATION DATA

This application is the National Stage of International
Patent Application No. PCT/CA2012/000297, filed Mar. 30,
2012, the disclosure of which is hereby incorporated by
reference in its entirety.

TECHNICAL FIELD

The present invention relates to secured execution of a
web application.

BACKGROUND

Wireless interconnectivity and devices are dominant tech-
nologies being deployed and used in everyday life, whether
for business use or personal use. In addition, cloud comput-
ing is changing information cultures and is part of an
emerging business strategy for a new delivery model for
Internet-based computation services, application software,
data access, and storage. Security associated with untrusted
environments becomes challenging. Traditional computer
and network security schemes are inadequate to address
vulnerabilities and attacks associated to these untrusted
systems.

A web application is an application that is accessed over
a network such as the Internet or an intranet by using web
browsers, and is coded in a browser-supported language
(such as JavaScript, combined with a browser-rendered
markup language like HTML). The web application relies on
a common web browser to render the application executable.
The ability to update and maintain web applications without
distributing and installing software on potentially thousands
of client computers is a key reason for their popularity, as is
the inherent support for cross-platform compatibility. Com-
pared to early HITML and JavaScript to the latest HTMLS,
latest web applications are becoming platform and browsers
independent. Browsers are also providing application execu-
tion environments. When compared to native execution
environments, secured execution of a web application pro-
vides new challenges. Pressure is greater than before on
mobile device manufacturers (whether smart phones or
tablets) and network operators to maintain costs at the
lowest possible level. Yet, execution of the same web
application should provide the same functionality, no matter
what device it is executed on. For lower end devices,
resources are usually more limited, which creates additional
pressure on the web applications.

For example, KJava on Symbian platform is a scaled
down Java Virtual Machine (JVM) designed for mobile
platforms. KJava contains a subset of the Java 2 Standard
Edition (J2SE) packages and implements restricted Mobile
Information Device Profile (MIDP) and restricted Con-
nected Limited Device Configuration (CLDC) profiles. For
instance, restrictions include 1) no support for Java Native
Interface (JNI); 2) limited reflection capabilities (e.g., lim-
ited ability to examine or modify runtime behavior); 3) no
custom class loaders (e.g., no ability to fine tune behavior of
the class loader).

Exemplary limitations related to execution resources or
environment restrictions have been mentioned and are of
particular relevance in the context securing web application
execution, which is generally addressed in the present appli-
cation.

10

15

30

40

45

55

2
SUMMARY

The present invention aims generally at providing pro-
tection techniques to secure execution of web applications
within non-native execution environments. In general, a
client device should support running applications on-line
(internet connected) or off-line (not internet connected).
Securing the execution of such applications should be per-
sistent, no matter whether it runs on-line or off-line. The
present invention provides a general framework that allows
for secured execution of an application on-line or off-line,
although the protection techniques can leverage specific
aspects of on-line or off-line execution.

A first aspect of the present invention is directed to a
method for securing execution of a web application com-
prising. The method comprises, on a processor of a client
device, invoking a function of the web application. The
method follows with, on the processor of the client device,
invoking a Partial Execution Stub (PES) function during
execution of the function of the web application. The
method then continues, from the PES function, with sending
a message call with current execution information related to
the web application. The message call is sent to a trusted
module. A verification result is thereafter received by the
PES function from the trusted module related to the message
call.

Optionally, the method may also comprise establishing,
by the PES function, a communication connection with the
trusted module. In this option, the message call is sent via
the socket connection and the verification result is received
via the communication connection. The communication
connection may be a local or remote socket connection or a
websocket connection that can be used for both local and
remote connections. The trusted module may be executed on
a server node or locally in the client device.

In one option, a second message call is sent to a second
trusted module from the PES function with further current
execution information related to the web application. For
instance, the second trusted module may provide at least one
function not offered by the trusted module. The PES func-
tion may thereafter receive a second verification result from
the second trusted module related to the second message
call.

In another option, the PES function may forward the
message call with current execution information related to
the web application to a second trusted module in response
to the verification result. For instance, the second trusted
module may provide at least one function offered by the
trusted module and the verification result may indicate that
the required processing was not performed by the first
trusted module or indicate that a timeout from the trusted
module was received as the verification result. The PES
function may thereafter receive a second verification result
from the second trusted module related to the forwarded
message call.

Optionally, the verification result may indicate tampering
of the web application, in which case the method may
further comprise, from the PES function, invoking a miti-
gation action. The mitigation action can vary and may
involve, e.g., returning incorrect next function information,
returning an invalid function definition, or returning a stan-
dard error function or result, causing the application behav-
ior to fail immediately, fail gradually or execute incorrectly.

The verification result may alternatively comprise a next
function information to be invoked for the web application.
In this latter case, the method may follow with invoking the
next function. The method may also follow with returning a

US 9,471,776 B2

3

function to the web application for injection into the web
application and subsequent invocation.

A second aspect of the presented invention is directed to
a method executed in a network node for converting a web
application to a secured web application. The secured web
application may be obtained by applying static and/or
dynamic processing techniques. The determination of what
combination of processing techniques depends on imple-
mentation choice being the web application. In this second
aspect, the processor is exemplified as securing the web
application in a static manner. For instance, the processing
is applied to the web application prior to deploying the web
application.

The method comprises reading, at the network node, code
of the web application from a memory unit. The code
comprises more than one function. Thereafter, the method
continues with determining from a function call graph of the
web application, that at least a call dependency from a first
function to a second function of the more than one function
needs to be protected. The web application is thus modified
into the secured web application code by adding to the code
of the web application, a at least one Partial Execution Stub
(PES) function comprising code to establish a communica-
tion connection with a trusted module. The PES function
requires interaction with the trusted module. The web appli-
cation is further modified into the secured web application
code by modifying code of the web application by replacing
invocation of the second function from the first function
with invocation of the PES function from the first function
and generating a set of rules from the function call depen-
dency graph to define the call dependency from the PES
function to the second function. Thereafter, the method
follows with, at the network node, storing the secured web
application into the memory unit and the set of rules into the
memory unit. Once the secured web application is obtained,
it may be delivered to one or more client device.

Optionally, a plurality of PES functions may be present
and each one of those may be related to a call dependency.

Optionally, generating the set of rules is performed by
generating a symbolic Partial Execution Flow Map (PEFM)
and storing the set of rules into the memory unit is per-
formed by storing the symbolic PEFM into the memory unit.
Generating the set of rules may further comprise taking
security requirements related to security actions and miti-
gating actions into consideration.

As another option, the first function and the second
function may be present in the code of the web application
as a single function. The method may thus further comprise
splitting the single function into the first and second func-
tions based on an asset being processed in the single
function.

The set of rules (or the symbolic PEFM) may comprise a
record comprising a current caller element identifying the
first function as a current calling function requiring an
inquiry before invoking the second function, a current PES
element identifying the PES function as invoking the trusted
module to trigger the inquiry, a next function element
identifying the second function and providing information
necessary for invocation of the second function, an element
of trusted functions identifying a set of functions that are
linked with the trusted module and can be executed by an
invoking mechanism within the trusted module and a secu-
rity actions element identifying a set of security features that
the trusted module is capable of executing prior to returning
a result of the inquiry.

10

15

20

25

35

40

45

50

55

60

65

4

The method may also optionally comprise signing the
secured web application prior to storing and encrypting set
of rules prior to storing.

A third aspect of the present invention is directed to a
trusted module for securing execution of a web application
executing on a client device. The trusted module comprises
a connection module, a function call module and a verifi-
cation module.

The connection module is for receiving a communication
connection request from a Partial Execution Stub (PES)
function of the web application. The function call module is
for receiving a message call from the PES function via the
communication connection. The message call comprises
current execution information related to the web application.
The verification module is for determining, based on the
current execution information, a next function to be
executed for the web application and sending a result of the
determination to the PES function via the communication
connection.

The trusted module may be executed on a server node
remote from the client device executing the web application
or on the client device. The trusted module may further
comprise a security module comprising secured functions
and pre-defined mitigating actions.

Optionally, the result of the determination may indicate
tampering of the web application. Alternatively, the result of
the determination may comprise a next function information
to be invoked for the web application.

The connection module may optionally further establish a
connection with a second trusted module in order to obtain
the verification result. The second trusted module may
provide at least one function offered by the trusted module
and/or at least one function not offered by the trusted
module.

A fourth aspect of the present invention is directed to a
client device comprising a network interface module and a
processor executing a web application. The network inter-
face module opens a communication connection between a
Partial Execution Stub (PES) function and a trusted module.
The processor executes the web application by invoking a
function of a web application, invoking the PES function
during execution of the function of the web application,
sending a message call from the PES function with current
execution information related to the web application to the
trusted module via the communication connection and
receiving a verification result from the trusted module
related to the message call.

Optionally, the trusted module may be executed on a
remote server node.

The verification result may indicate tampering of the web
application, in which case the processor may further execute
a mitigation action. Alternatively, the verification result may
also comprise a next function information to be invoked for
the web application, in which case the processor further
invokes the next function.

A fifth aspect of the present invention is directed to a
network node for converting a web application to a secured
web application. The network node comprises a memory
unit and a processor for securing the web application.

The memory unit is for storing code of the web applica-
tion, which comprises more than one function.

The processor is for securing the web application by
determining, from a function call graph of the web appli-
cation comprising at least a call dependency from a first
function to a second function of the more than one function,
that the call dependency from the first function to the second
function needs to be protected, and modifying the web

US 9,471,776 B2

5

application into the secured web application code. Modify-
ing the web application into the secured web application
code is performed by adding to the code of the web
application, a partial execution stub (PES) function com-
prising code to establish a communication connection with
a trusted module. The PES function requires interaction with
the trusted module. Modifying the web application into the
secured web application code is further performed by modi-
fying code of the web application by replacing invocation of
the second function from the first function with invocation
of'the PES function from the first function and generating a
set of rules from the function call dependency graph to
define a call dependency from the PES function to the
second function. The processor is further securing the web
application by storing the secured web application and the
set of rules into the memory unit. In the fifth aspect, the
processor is exemplified as securing the web application in
a dynamic manner. For instance, the processing is applied
prior to sending the web application to the client device, but
after the web application is installed on a network node.

Optionally, generating the set of rules may further com-
prise taking security requirements related to security actions
and mitigating actions into consideration.

Optionally, generating the set of rules is performed by
generating a symbolic Partial Execution Flow Map (PEFM)
and storing the set of rules into the memory unit is per-
formed by storing the symbolic PEFM into the memory unit.

As another option, the first function and the second
function are present in the code of the web application as a
single function. The processor is further splitting the single
function into the first and second functions based on an asset
being processed in the single function.

The processor may further sign the secured web applica-
tion prior to storing and encrypt the set of rules prior to
storing.

BRIEF DESCRIPTION OF THE DRAWINGS

In the appended drawings:

FIG. 1 shows an exemplary modular representation of
different components involved in secured execution of a web
application in accordance with the present invention;

FIG. 2 shows an exemplary function splitting in accor-
dance with the present invention;

FIG. 3 shows an exemplary original function dependency
in accordance with the present invention;

FIG. 4 shows an exemplary protected application code
with incomplete partial execution in accordance with the
present invention;

FIG. 5(a) shows an exemplary modular representation
and functional diagram of an invocation of Flp to F2p via
Flpes2 in accordance with the present invention;

FIG. 5(b) shows an exemplary modular representation
and functional diagram of an invocation of Flp to F2p to F3
via F2pes3 in accordance with the present invention;

FIG. 5(c¢) shows an exemplary modular representation and
functional diagram of an invocation return back from F3 to
Flp in accordance with the present invention;

FIG. 5(d) shows an exemplary modular representation
and functional diagram of an invocation of Flp to F3 via
Flpes3 in accordance with the present invention;

FIG. 6 shows an exemplary modular representation and
functional diagram of a Klava application solution archi-
tecture in accordance with the present invention;

FIG. 7 shows an exemplary modular representation and
functional diagram of a HTMLS web application protection
architecture in accordance with the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 8 is an exemplary flow chart of secured execution of
a web application in accordance with the teachings of the
present invention;

FIG. 9 is an exemplary flow chart of converting a web
application to a secured web application in accordance with
the teachings of the present invention;

FIG. 10 is a modular representation of an exemplary a
trusted module 1000 in accordance with the teachings of the
present invention;

FIG. 11 is a modular representation of an exemplary a
network node in accordance with the teachings of the
present invention; and

FIG. 12 is a modular representation of an exemplary client
device in accordance with the teachings of the present
invention.

DETAILED DESCRIPTION

Computer programs are generally expressed in some
abstract language. The language can be translated using a
series of compilation and linking steps to a binary code that
can be executed (or interpreted) by a computer (or other
processing devices). The programs can also be compiled into
a virtual machine instruction set that can be executed on a
virtual machine interpreter. Some programming languages
do not require the compilation and linking steps, but are
interpreted by a language specific interpreter.

Protecting interpreted code is a difficult problem as the
source code of the application is available at the client and
the application has no direct access to the machine hardware.

A known attack technique is to analyze the control or
logical flow of an application. In order to prevent an attacker
to analyze the logical flow of the application, it is possible
to remove the control flow from the program and replace it
with a runtime access to an address server that provides the
application with the information required to continue execu-
tion. Such possibility is currently only available for native
execution environments and not to non-native languages and
environments.

It is possible to perform some functions at a remote
computer with special resources, which cannot be easily
and/or efficiently be transferred to a client. The details of the
remote functions cannot easily be observed by an attacker.
Some examples of this technology are Remote Procedure
Calls (RPC), Common Object Request Broker Architecture
(CORBA) and Simple Object Access Protocol (SOAP).

Trust modules are used in various applications and take
the form of smart cards, dongles and cryptographic modules.
These are commonly used to perform some attack sensitive
functions. Moving these functions to a more attack-resistant
environment increases the security of the application execut-
ing in a more open execution environment. Digital Rights
Management (DRM) clients implement similar trust module
functions using software. It is possible to have a software
application implementing a standard decoder for com-
pressed video streams where some data structures in the
standard decoder need to be adapted by software executing
in a more tamper-resistant environment.

There are security problems in securing execution of
non-native applications. For instance, non-native execution
environments, such as web browsers, JVM and other script-
ing environments, are much less secured than native execu-
tion environments. Exemplary causes include:

1. In interpreted languages, attackers can access a high
level language description of the application, and modify
underlying code and execution logics including control flow
and decision information.

US 9,471,776 B2

7

2. Non-native applications are shielded from the details of
the underlying hardware or operating system. The non-
native applications do not directly access security resources
provided by the computing platform and do not use strong
protection enabled by and built up on the native computing
platforms.

3. An application engine, a virtual machine (run-time
environment), or scripting engine is not typically designed
and implemented with necessary requirements for white-box
security and self-protection. Although they may introduce
certain security, they typically only address certain man-in-
the-middle vulnerabilities. A fundamental security weakness
is typically a good place to start for an attacker that wishes
to hack an application.

4. Many well developed or commercialized software
security and protection techniques designed to protect native
code cannot be directly adapted to non-native execution
environments.

Another example of security problems related to securing
execution of non-native applications is that the execution of
a non-native application typically involves different pieces
of software. The different pieces of software are usually
provided in different forms and perform interactions at
different execution stages. For instance, it is typically easier
to do snip and spoof attacks to non-native execution logics
compared to native executables. It is likely more difficult to
maintain the integrity of the execution of a non-native
application.

Yet another example of security problems related to
securing execution of non-native applications is that many
security features and protection mechanisms need to be
triggered or involved from the protected execution of a
non-native application. If the security features are not tightly
integrated and interwoven with the original functional
execution logic of the non-native application, they can easily
be skipped or removed from the protected execution leading
to the overall security from such protections being compro-
mised. Hence, securing execution against any attack in the
protected execution shall result into failure of the protected
non-native application to execute, thereby preventing
attacker to achieve the goals and access protected assets.

It is possible to use a trusted module to extend its security
services to a non-native application. The trusted module
should be a well protected component and provide a set of
protections. The trusted module may provide for a trusted
zone as a root of trustiness extending to a non-native
application by an execution-enabling mechanism between
the non-native application code and the trusted module.

The present invention aims at securing applications by
moving control flow decisions and sensitive functions from
the actual application to a trusted module generating an
adapted application and protected data that needs to be
processed by a trusted module. In general, this objective is
achieved by interlacing application code (non-native side)
and trusted module (can be native side, or non-native or in
other forms including implemented in hardware) by using
partial execution dependencies, which are processed and
generated statically or dynamically by a tool. After this
processing, the new adapted application code only contains
incomplete execution logics. The remaining execution log-
ics and certain sensitive functions are represented in partial
execution dependencies that can be managed and accessed
only by the trusted module, and not directly from the
protected non-native application code.

For instance, during execution, an adapted (e.g., secured)
application connects to the trusted module and transmits its
current point of execution and some context information.

10

15

20

25

30

35

40

45

50

55

60

65

8

The trusted module processes the context data based on the
current point of execution and the protected data, which may
include code for the trusted module. With this mechanism,
the real execution of the protected application may be
constructed dynamically by using partial execution depen-
dencies by interacting with the trusted module. As a result
the adapted application obtains modified context informa-
tion and a new control point where the adapted application
continues its execution.

There is no static view of execution logics presented fully
by the protected application code. At any state of the
execution, only current partial execution becomes visible
within the non-native execution environment.

An original execution flow is protected by execution
within the trusted module. The trusted module can be
connected by using an execution-enabling mechanism (e.g.,
an Application Programming Interface (API)) between the
protected application and the trusted module (e.g., JNI
between Java and native code) or communication channels
such as sockets or remote connections to connect the pro-
tected application and the trusted module. In the example of
HTMLS5 environment, Websocket can provide a connection
to serve both local and remote communications between an
application and trusted modules. It is possible to use a
WebSocket API to connect a HTMLS5 web application with
a local or/and remote trusted module or connect a local
trusted module with a remote trusted module. Such a com-
munication capability can empower, simplify and standard-
ize some implementation of this invention. Secured appli-
cation that would be subjected to an attack (e.g., to hacking),
such as trying to skip execution through the trusted module
may thus cause wrong behavior or incomplete execution of
the original application. This technique is thus able to
improve trustworthiness of distributed application execution
compared to current mechanism.

Connection methods to bridge execution between the
protected application and the trusted module may require
design and implementation of partial execution dependen-
cies. If there is an execution extension interface between
non-native and native, such as JNI, partial execution depen-
dencies can be represented directly in code form or through
more advanced protections. If there is no such execution
interface, such as kJava environment or HTML5 Websock-
ets in a web browser environment, partial execution depen-
dencies need to be represented as symbolic forms that can be
passed by communication channels. In HTMLS, protections
can be further enhanced by providing function decryption
during execution such that the function is unencrypted and
dynamically loaded into the web browser page.

The present invention extends the function of an external
trust module with root of trustiness and secured capabilities.
The trusted module calculates a next execution point for the
execution/interpretation and processes context information
that allows the trusted application to implement some secu-
rity sensitive operations and return modified context infor-
mation.

As the attacker can no longer easily observe the functional
processing in both the adapted application and trusted mod-
ule, the application is more difficult to reverse engineer.

From a programming perspective, a function (routine) is
one of most basic and important functional constructs of
software. In general, a call dependency of an application
code contains one of most important execution logics that
layout structural relationship between different functions
that are functional components. Executable code, by nature,
self-contains such a dependency. Therefore, it is relatively
easy to alter the execution by modifying call dependency to

US 9,471,776 B2

9

tamper original execution. From security requirements, cer-
tain functions are critical because they involve valuable
digital assets, such as crypto keys, IP algorithms, bank
account numbers, login passwords, proprietary business
logics, etc., that require necessary protection. From attack-
ing purpose, those functions become main targets for
attacks. Securing the execution is to protect those functions
and call dependencies between those functions to guarantee
the integrity of the original execution of the application.

Reference is now made to the drawings, in which FIG. 1
shows an exemplary overview of securing execution via
dynamic partial execution. FIG. 1 shows a non-native execu-
tion environment 100, a trusted module 110, a communica-
tion (e.g., socket) connection 120 between the non-native
execution environment 100 and the trusted module 110 and
a secured storage 130. Upon analysis of the call graph of a
non-application code, it is possible to replace some call
dependencies of specific functions (e.g., that can be identi-
fied and specified by a user) into symbolic Partial Execution
Flow Map (PEFM). The original calls are then replace with
partial execution stubs (PES) 1024 . . . 102¢ that can bridge
invoking relationship between protected function codes 104
via the trusted module 110. During run-time of the protected
application 104, when executing a protected function F1 that
intends to invoke next function F2 that is also protected, F1
actually invokes a particular PES 1024 such that it holds the
current execution and sends a message call with current
execution information through the communication connec-
tion 110 to the trusted module 120 to inquire a next method
to be executed. The trusted module 120 will use the current
execution information to search the next function to be
executed from a secured PEFM 132. If the search is suc-
cessful, the trusted module 120 can perform some security
features, for example integrity verification and anti-debug
before returning the next function information to be invoked
as the result back to the PES 1024 via the communication
connection 11o. If the search failed, it indicates that the
current call dependency is tampered and an attack is
detected. A designated mitigation action may thus be taken
by the trusted module. After the PES 102a receives the next
function information, the PES 1024 passes necessary param-
eters and invokes the particular function accordingly in
order to continue the execution of this protected application
104.

The following list includes exemplary advantages which
may be provided by different embodiments of the present
invention:

A protected application code contains, statically, only
partial execution information. Without knowing
dynamically-removed partial execution flow informa-
tion within the trusted module 120, the entire applica-
tion cannot execute completely and correctly.

This secured execution interlacing extends application
execution with the trusted module 129 (or other third
party security modules) during the execution. It pro-
vides an opportunity for various additional protection
features to be deployed by the trusted module 120.

FIG. 2 shows an exemplary function splitting in accor-
dance with the present invention. An original execution can
be enhanced by necessary function splitting, e.g., for secu-
rity purpose. A function can be split into two or more than
two smaller functions by introducing new invoking relation-
ship. For example, there are two functions, F1 and F2. We
can split F1 into three smaller functions F11, F12 and F13.
This is a technique that can be applied in source code level,

10

15

20

25

30

35

40

45

50

55

60

65

10

intermediate code level or binary code level. On source code
level, it can be done manually with some security code
guideline.

For security requirements, if a function contains a number
of assets that are processed within some important code
segments, it is likely to be more secure to split the function
into smaller functions in order to leverage interlacing capa-
bility using dynamic partial execution interlacing. Examples
of assets that are likely to require protection include crypto
keys, 1P algorithms, bank account numbers, login passwords
and proprietary business logics.

A record of the PEFM 132 is formatted with four ele-
ments:

1. Current caller: specify the name of current calling
function that requires an inquiry for next function to invoke.

2. Current PES stub: specify the name of the current PES
stub to invoke the trusted module to trigger the inquiry.

3. Next function: specify necessary information of next
function to be invoked by current caller. For different
non-execution environment, the information can be differ-
ent. For example, in a JVM, the information of next function
may contain class name and method name whereas in
HTMLS, it may contain a page or document object model of
the web page and the javaScript function name.

4. Trusted functions: specify a set of functions that have
been linked with the trusted module and can be executed by
invoking mechanism within the trusted module. Normally,
these functions are some special functions offered by the
trusted module or some original functions have been imple-
mented in a way that can be loaded into the trusted module.
Trusted functions can be deployed with the trusted module
at installation time, and/or dynamically linked with the
trusted module at runtime. The nature of types of trusted
functions and how they are deployed can be dependent on
the trusted module implementation. Exemplary trusted func-
tions include cryptographic operations and integrity verifi-
cation functions. In addition, while processing a web appli-
cation, it may be possible to analyze a web page content and
extract sensitive functions for trusted function invocation.
These trusted functions can be delivered to the trusted
module in encrypted form, and loaded, decrypted and
executed by the trusted module.

5. Security actions: specify a set of security features that
the trusted module can do prior to returning search result. It
is optional and up to user’s requests during build-time. Also,
it can be driven by security policy.

Reference is now made concurrently to FIGS. 3 and 4,
which respectively show an exemplary original function
dependency and an exemplary protected application code
with incomplete partial. The example of FIGS. 3 and 4 is
useful in illustrating partial execution flow in more details.

A processing tool can take the following steps to generate
the protected application code only with partial execution
and a symbolic PEFM:

Step 1: If necessary, do function splitting based on some
security requirements. This step is not required in the present
example.

Step 2: Analyze the call graph and identify the important
functions and their call dependencies for protection by
requests from a user as input options and configuration to the
tool. In the present example, we would like to protect F1 and
F2 and call dependencies of F1 calling F2, F1 calling F3 and
F2 calling F3.

3. Step 3: For each of functions to be protected and for
each calling dependency that requires to be protected

a. A PES function is created. The PES function can accept
real parameters from caller function and pass them to the

US 9,471,776 B2

11

callee function that will be dynamically determined. Also,
the PES function needs to facilitate the communication with
a communication (e.g., socket) connection with the trusted
module. For example, for F1 calling F2, we create Flpes2
stub function.

b. The original invoking is replaced by invoking the PES
stub function.

For example, F1 calling F2 is replaced by invoking
Flpes2 stub function.

c. A record of PEFM is created with filling necessary
information. For example, on F1 calling F2, the record of
PEFM can be set as follows:

i. Current caller: Flp

ii. Current PES stub: Flpes2

iii. Trusted functions: ignore for this example.

iv. Next function: F2p

v. Security actions: Integrity verification if we select this
option.

Step 4: Process trusted functions.

Step 5: Generate a protected application code that only
contain incomplete execution dependencies.

Step 6: Generate a symbolic PEFM and then encrypt it by
using white-box cryptographic methods.

Step 7: Perform the signing to protected code of the
non-native application and generate integrity verification
(IV) voucher.

Step 8: Encrypt PEDM and IV voucher using white-box
cryptographic methods and pack them into a easy-deploy
package

After this exemplary processing, a protected application
code with protected partial execution dependencies (as illus-
trated in FIG. 4) and a record of the PEFM (as illustrated in
the following table 1) are generated.

TABLE 1

an example of PEFM

Current Current Trusted

Caller PES Stub functions Next Function Security Actions
Flp Flpes2 IV and AD F2P Integrity verification
Flp Flpes3 IV and AD F3 Anti-debug
F2p F2pes3 IV and AD F3 Integrity verification

The entire call relationship of an application does not
need to be symbolized. Instead, only certain call dependen-
cies between most needed functions and require security
features that can be enforced by the trusted module should
be symbolized.

Depending on the business model, there are typical four
deployment models:

1. Deploy both of the protected application code, trusted
module and partial execution package into a client environ-
ment. The protected application code should look like nor-
mal application. It still can be applied by other protection
techniques like normal applications. For example, you can
still apply secure loader protection. The partial execution
package must be stored into local secured storage where the
trusted module is able to access.

2. Deploy the protected application code and trusted
module into a client environment and partial execution
package into a remote trusted storage. The key difference
between this model and above model is that partial execu-
tion package needs to be deployed into a remote storage
server that can be accessed by the trusted module via remote
access facility.

10

15

20

25

30

35

40

45

50

60

12

3. Deploy the protected application code into a client
environment, and a trusted module partial and execution
package into a remote trusted storage. The key difference
between this model and other models is that the trusted
module and partial execution package can be deployed
remotely and partial execution package can be stored in a
remote storage server that can be accessed by protected
application via remote access facility.

4. Combine 3 models above together to deploy the pro-
tected application code into a client environment with the
following possible characteristics:

a. In the client environment, there are one or more trusted
modules and some partial execution package is stored in
local secured storage.

b. In remote servers or cloud environments, there are one
or more trusted modules and some partial execution package
is stored in remote trusted storage.

¢. Dynamical execution dependency will be coordinated
by correlations between different trusted modules locally
and remotely.

d. Protection can be on-line or off-line or switch between
locally or remotely, making attacks difficult.

The present invention is not meant to be limited to any of
the foregoing scenarios, but can be very flexible and applied
to achieve strong protection and flexible renewability.

After a protected application and its partial execution
package are deployed, the protection can take its effects
when the protected application is running on a device. The
example of FIGS. 3 and 4 is reused to discuss securing the
execution by using the dynamic partial execution with
reference to FIGS. 5(a), (b), (¢) and (d).

When executing a protected function (Flp) from a non-
native execution environment 500, a particular PES function
(Flpes2) is first invoked with a set of real parameters, which
parameters are the ones the original F1 would use to invoke
original F2. The Flpes2 function accepts inputs and then
sends a down call message with current execution informa-
tion, in which Flp is identified as the current caller and
Flpes2 is identified as the current PES. The down call
message is sent to a trusted module 520 through a commu-
nication (e.g., socket) connection 510 to inquire a next
method to be executed.

The trusted module 520 will use this current execution
information to search the next function to be executed from
the secured PEFM located in a secured storage 530. A search
component, PE Handler, within the trusted module 520 can
decrypt and access the PEFM securely by using white-box
crypto and search whether the current execution information
can match a record of PEFM. If the search fails, it indicates
that the current call dependency is tampered and an attack is
detected such that the current execution will be on-hold and
entry mitigating stage. Otherwise, the search is successful
and it indicates that the current execution can be continuing.
Considering the matching, the trusted module 520 gets
research results of next function and security actions. Next,
the security agent of the trusted module 520 can perform
those security actions, for example integrity verification and
anti-debug. If those security features are successful, the
trusted module 520 will send a response message to the
Flpes2 via the communication connection 510 with the next
function information to be invoked as the result back.
Otherwise, other attacks will be detected by the trusted
module 520, through using those security features and the
current execution, should enter the mitigating stage.

After the Flpes2 receives the next function information
from the trusted module 520, the Flpes2 invokes the F2p

US 9,471,776 B2

13

and pass necessary parameters received while Flp called
accordingly in order to continue the execution of this
protected application.

Thereafter, the current execution extends to a protected
function (F2p). When F2pes3 is invoked, it acts similarly to
the Flpes2 with a set of real parameters, which are param-
eters that original F2 would use to invoke original F3. The
F2pes3 function accepts these parameters and then sends
message to the trusted module 520 with current execution
information, in which F2p is identified as the current caller
and F2pes3 is identified as the current PES, to the trusted
module 520 through the communication connection 510 to
inquire a next method to be executed. Similarly, the trusted
module 520 uses the new current execution information to
search the next function for F2p to be executed from the
secured PEFM. The process above is not repeated, for sake
of conciseness.

Suppose the trusted module 520 returns F3 as the next
function to the F2pes3, it then passes the received param-
eters to the F3 and invoke the F3.

After execution of F3 is completed, the current execution
returns back to the F2pes3 and then return back to the F2p,
and then return back to the Flpes2 and finally return back to
Flp, which is particularly illustrated on FIG. 5(¢).

Afterwards, the example continues with, the F1p invoking
F3 via Flpes3, as particularly illustrated in FIG. 5 (d).

FIG. 6 shows an exemplary modular representation and
functional diagram of a Klava application solution archi-
tecture.

FIG. 7 shows an exemplary modular representation and
functional diagram of a HTMLS web application protection
architecture. The techniques presented above with reference
to a HTMLS5 web application is reused. With Websockets,
the general architecture of partial execution protection can
be more flexible in terms of deployment strategy of trusted
modules and partial execution information.

Here are some exemplary differences between HTMLS
web application protection architecture via partial execution
and Klava application solution architecture via partial
execution:

With HTMLS, the page can be changed dynamically
during execution, so function code can be stored in the
trust module and retrieved/decrypted at page execution
time, and can also be removed from the page.

Initially when web app is loaded (assumption that it is
from some remote server), a filter is introduced, which
applies dynamic transforms to the page before it
reaches the client browser. For example this would
have to parse and transform the http response.

The filter introduce would require the page response,
implement transform techniques such as adding partial
execution stubs, encrypting functions and replacing
standard storage APIs with a specific secure store API
(over websocket). Partial execution stubs could be
requested by the trust module or pre-provisioned.

Because the websocket can make connections between
two local application components or between local and
remote application components, multiple trusted mod-
ules can be introduced.

When the web client is online, this also allows the trust
module to communicate with the web application to
managed transforms, retrieve page code, shared keys,
authentication, etc.

There are some identified exemplary security advantages

to using the optional HTMLS web applications are obvious:

Protected HTML page only contains partial execution
information. Without knowledge of the dynamically

10

20

25

30

40

45

50

55

60

65

14

removed partial execution info within Trusted Module,
the entire application cannot function.

A web application, or different web applications can
connect to one or different trusted modules locally
or/and remotely. Different trusted modules can offer
overlap or different security features to make attacks
difficult. Also, necessary redundancy introduced by
multiple trusted modules locally or remotely or both
can make renewability and protection effective or flex-
ible.

This secured execution interlocking extends application
execution with Trusted Module during the execution. It
provides opportunity for various additional protection
features.

Among other exemplary use cases, the present invention
is expected to be useful to secure applications implemented
using scripted languages, interpreted languages and virtual
machines. The trusted module can be either a software
module or a hardware module. Adoption of virtual machines
(e.g., BD+VM) in SetTop Boxes (STB) is also considered in
order to improve updating of the CA client in the STB. In
addition to processing, the smart card could also implement
the dynamic control flow functions as described in this
invention. The present invention may also enable deploy-
ment of a trusted module solution to much wider non-native
execution environments with a better protection to secure
the execution of a non-native application.

FIG. 8 shows an exemplary flow chart of secured execu-
tion of a web application in accordance with the teachings of
the present invention. On a processor of a client device, a
function of the web application is invoked 810. A Partial
Execution Stub (PES) function is invoked during execution
of'the function of the web application 820. The PES function
may optionally establish a communication (e.g., socket)
connection with a trusted module (not shown). A message
call with current execution information related to the web
application is then sent from the PES function 830. The
message call is sent to the trusted module. The message call
may be sent over the communication connection. A verifi-
cation result is thereafter received by the PES function from
the trusted module related to the message call 840. The
message call may be sent and the verification message over
the communication connection. The communication connec-
tion may be a local or remote socket connection or a
websocket connection for handling local or remote connec-
tions.

The trusted module may be executed on a server node or
locally in the client device.

The verification result may indicate tampering of the web
application, in which case the PES function may invoke a
mitigation function (not shown). The mitigation action can
vary and may involve, e.g., returning incorrect next function
information, returning an invalid function definition, or
returning a standard error function or result, causing the
application behavior to fail immediately, gradually or
execute incorrectly.

The verification result may alternatively comprise a next
function information to be invoked for the web application.
It may further comprise none or some parameter(s) required
by the next function. In this latter case, the method follows
with invoking the next function (not shown).

A second message call (not shown) may be sent to a
second trusted module from the PES function with further
current execution information related to the web application.
For instance, the second trusted module may provide at least
one function not offered by the trusted module. The PES
function may thereafter receive a second verification result

US 9,471,776 B2

15

(not shown) from the second trusted module related to the
second message call. The PES function may also alterna-
tively forward the message call (not shown) with current
execution information related to the web application to the
second trusted module in response to the verification result.
For instance, the second trusted module may provide at least
one function offered by the trusted module and the verifi-
cation result may indicate that the required processing was
not performed by the first trusted module, indicate that a
timeout was received as the verification result from the
trusted module, etc. The PES function may thereafter
receive a second verification result (not shown) from the
second trusted module related to the forwarded message call.

FIG. 9 shows an exemplary flow chart of converting a
web application to a secured web application. The secured
web application may be obtained by applying static and/or
dynamic processing techniques. The determination of what
combination of processing techniques depends on imple-
mentation choice being the web application. At a network
node, code of the web application is read from a memory
unit (not shown). The code comprises multiple functions.
The function call graph comprises at least a call dependency
from a first function to a second function of the multiple
functions. It is then determined that the call dependency
from the first function to the second function needs to be
protected (910). The web application is thus modified into
the secured web application code by adding to the code of
the web application, a partial execution stub (PES) function
comprising code to establish a communication (e.g., socket)
connection with a trusted module (920). The PES function
requires interaction with the trusted module in order to
perform the action previously taken by the second function.
The web application is further modified into the secured web
application code by modifying code of the web application
by replacing invocation of the second function from the first
function with invocation of the PES function from the first
function (940) and generating a set of rules to define a call
dependency from the PES function to the second function
(950). The secured web application and the set of rules are
stored into the memory unit. Once the secured web appli-
cation is obtained, it may be delivered to one or more client
device.

Optionally, generating the set of rules may be performed
by generating a symbolic Partial Execution Flow Map
(PEFM) and storing the set of rules into the memory unit is
performed by storing the symbolic PEFM into the memory
unit (not shown). Generating the set of rules may further
comprise taking security requirements related to security
actions and mitigating actions into consideration (not
shown).

As another option, the first function and the second
function may be present in the code of the web application
as a single function. It may be necessary to split the single
function into the first and second functions (not shown)
based on an asset being processed in the single function
(e.g., the single function may be read from the memory unit,
split and stored to the memory unit as the first and second
functions, which happens prior to reading the first and
second functions therefrom).

The symbolic PEFM may comprise a record comprising
a current caller element identifying the first function as a
current calling function requiring an inquiry before invoking
the second function, a current PES element identifying the
PES function as invoking the trusted module to trigger the
inquiry, a next function element identifying the second
function and providing information necessary for invocation
of the second function, a trusted functions element identi-

10

15

20

25

30

35

40

45

50

55

60

65

16

fying a set of functions that are linked with the trusted
module and can be executed by an invoking mechanism
within the trusted module and a security actions element
identifying a set of security features that the trusted module
is capable of executing prior to returning a result of the
inquiry.

Optionally, it is also possible to sign the secured web
application prior to storing and encrypting the set of rules (or
symbolic PEFM) prior to storing.

FIG. 10 shows a trusted module 1000 for securing execu-
tion of a web application executing on a client device. The
trusted module comprises a network interface module 1010,
a function call module 1020 and a verification module 1030.
The trusted module may also comprise a security module
(not shown).

The network interface module 1010 is for receiving a
communication (e.g., socket) connection request from a
Partial Execution Stub (PES) function of the web applica-
tion. The function call module 1020 is for receiving a
message call from the PES function via the communication
connection. The message call comprises current execution
information related to the web application. The verification
module 1030 is for determining, based on the current
execution information, a next function to be executed for the
web application and sending a result of the determination to
the PES function via the communication connection.

The trusted module 1000 may be executed on a server
node (not shown) remote from the client device executing
the web application or on the client device (not shown). The
security module (not shown) may comprise secured func-
tions and pre-defined mitigating actions.

Optionally, the result of the determination may indicate
tampering of the web application. Alternatively, the result of
the determination may comprise a next function information
to be invoked for the web application and may further
comprise none or some parameter(s) required by the next
function.

FIG. 11 shows a network node 1100 for converting a web
application to a secured web application. The network node
1100 comprises a memory unit 1140 and a processor 1150
for securing the web application.

The memory unit 1140 is for storing code of the web
application, which comprises multiple functions.

The processor 1150 is for securing the web application by
determining, from a function call graph of the web appli-
cation, that at least a call dependency from a first function
to a second function of the web application needs to be
protected. The processor 1150 is also for modifying the web
application into the secured web application code. Modify-
ing the web application into the secured web application
code is performed by adding to the code of the web
application, a partial execution stub (PES) function com-
prising code to establish a communication (e.g., socket)
connection with a trusted module (not shown). The PES
function requires interaction with the trusted module in
order to perform the action originally taken by the second
function. Modifying the web application into the secured
web application code is further performed by modifying
code of the web application by replacing invocation of the
second function from the first function with invocation of
the PES function from the first function and generating a set
of rules to define a call dependency from the PES function
to the second function. The processor 1150 is further for
securing the web application by storing the secured web
application and the set of rules into the memory unit 1140.

Optionally, generating the set of rules may be performed
by generating a symbolic Partial Execution Flow Map

US 9,471,776 B2

17

(PEFM) and storing the set of rules into the memory unit
1140 may be performed by storing the symbolic PEFM into
the memory unit. Generating the set of rules may further
comprise taking security requirements related to security
actions and mitigating actions into consideration (not
shown).

As another option, the first function and the second
function may be present in the code of the web application
as a single function. The processor 1150 may then further
split the single function into the first and second functions
based on an asset being processed in the single function.

The processor 1150 may further sign the secured web
application prior to storing and encrypt the set of rules (or
symbolic PEFM) prior to storing.

The processor 1150 may represent a single processor with
one or more processor cores or an array of processors, each
comprising one or more processor cores. The memory unit
1140 may comprise various types of memory (different
standardized or kinds of Random Access Memory (RAM)
modules, memory cards, Read-Only Memory (ROM) mod-
ules, programmable ROM, etc.). Storage devices module
(not shown) may be further be present as one or more logical
or physical as well as local or remote hard disk drive (HDD)
(or an array thereof). The storage devices module may
further represent a local or remote database made accessible
to the network node 1100 by a standardized or proprietary
interface. The optional network interface module 1110 rep-
resents at least one physical interface that can be used to
communicate with other network nodes. The optional net-
work interface module 1110 may be made visible to the other
modules of the network node 1100 through one or more
logical interfaces. The actual stacks of protocols used by the
physical network interface(s) and/or logical network inter-
face(s) of the optional network interface module 1110 do not
affect the teachings of the present invention. The variants of
processor 1150, memory unit 1140, network interface mod-
ule 1110 and storage devices module usable in the context of
the present invention will be readily apparent to persons
skilled in the art. Likewise, even though explicit mentions of
the memory module 1140 and/or the processor 1150 are not
made throughout the description of the present examples,
persons skilled in the art will readily recognize that such
modules are used in conjunction with other modules of the
network node 1110 to perform routine as well as innovative
steps related to the present invention.

FIG. 12 shows a client device 1200 comprising a network
interface module 1210 and a processor 1250 executing a
web application. The network interface module 1210 opens
a communication (e.g., socket) connection between a Partial
Execution Stub (PES) function and a trusted module (not
shown). The communication connection may be a local or
remote socket connection or a websocket. The processor
1250 executes the web application by invoking a function of
a web application, invoking the PES function during execu-
tion of the function of the web application, sending a
message call from the PES function with current execution
information related to the web application to the trusted
module via the communication connection and receiving a
verification result from the trusted module related to the
message call.

Optionally, the trusted module may be executed on a
remote server node (not shown).

The verification result may indicate tampering of the web
application, in which case the processor 1250 may further
execute a mitigation action. Alternatively, the verification
result may also comprise a next function information to be
invoked for the web application and may, if applicable,

10

15

20

25

30

35

40

45

50

55

60

65

18

comprise one ore more parameter required by the next
function. The processor 1250 further invokes the next func-
tion.

The processor 1250 may represent a single processor with
one or more processor cores or an array of processors, each
comprising one or more processor cores. The optional
memory unit 1240 may comprise various types of memory
(different standardized or kinds of Random Access Memory
(RAM) modules, memory cards, Read-Only Memory
(ROM) modules, programmable ROM, etc.). Storage
devices module (not shown) may be further be present as
one or more logical or physical as well as local or remote
hard disk drive (HDD) (or an array thereof). The storage
devices module may further represent a local or remote
database made accessible to the client device 1200 by a
standardized or proprietary interface. The network interface
module 1210 represents at least one physical interface that
can be used to communicate with other network nodes. The
network interface module 1210 may be made visible to the
other modules of the client device 1200 through one or more
logical interfaces. The actual stacks of protocols used by the
physical network interface(s) and/or logical network inter-
face(s) of the network interface module 1210 do not affect
the teachings of the present invention. The variants of
processor 1250, optional memory unit 1240, network inter-
face module 1210 and storage devices module usable in the
context of the present invention will be readily apparent to
persons skilled in the art. Likewise, even though explicit
mentions of the optional memory module 1240 and/or the
processor 1250 are not made throughout the description of
the present examples, persons skilled in the art will readily
recognize that such modules are used in conjunction with
other modules of the client device 1200 to perform routine
as well as innovative steps related to the present invention.

In accordance with the present invention, in order to
deploy one or more web applications, multiple different
deployment models may be used. The chosen deployment
model may be affected by, for instance, by security require-
ments and the functional nature of the web applications. The
following four exemplary deployment models, among oth-
ers, are provided.

A first deployment model could be to deploy a secured
web application with PES functions, one or more trusted
modules and the PEFM into a client environment. The
PEFM may be stored into local secured storage accessible
locally to the trusted module. This first example of deploy-
ment model can provide support for off-line secured web
application execution.

A second deployment model could be to deploy the
secured web application with PES functions and one r more
trusted modules into a client environment and the PEFM
into a remote secured storage that can be accessed by the
trusted module via remote connection and access facility.

A third deployment model could be to deploy the secured
web application with PES functions into a client environ-
ment, and one or more trusted modules and the PEFM into
one or more remote network nodes. The secured storage that
can be accessed by PES functions via remote connection and
access facility.

A fourth deployment model could be to combine the first
three models to deploy the secured web application with
PES functions into a client environment different sets of
characteristics. For instance, in the client environment, there
could be one or more trusted modules and some PEFM
stored in local secured storage while one or more trusted
modules are stored in remote servers or cloud environments,
and some PEFM is stored in remote secured storage. In such

US 9,471,776 B2

19

an example, dynamic execution dependency can be coordi-
nated by correlating different trusted modules locally and
remotely. Execution of protected function may occur on-line
or off-line, or a mix of both, which likely renders attacks
even more difficult.

A method is generally conceived to be a self-consistent
sequence of steps leading to a desired result. These steps
require physical manipulations of physical quantities. Usu-
ally, though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated. It
is convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, parameters,
items, elements, objects, symbols, characters, terms, num-
bers, or the like. It should be noted, however, that all of these
terms and similar terms are to be associated with the
appropriate physical quantities and are merely convenient
labels applied to these quantities. The description of the
present invention has been presented for purposes of illus-
tration but is not intended to be exhaustive or limited to the
disclosed embodiments. Many modifications and variations
will be apparent to those of ordinary skill in the art. The
embodiments were chosen to explain the principles of the
invention and its practical applications and to enable others
of ordinary skill in the art to understand the invention in
order to implement various embodiments with various modi-
fications as might be suited to other contemplated uses.

What is claimed is:
1. A method executed by one or more computing devices
for securing execution of a web application in a non-native
execution environment, the method comprising:
executing, by at least one of the one or more computing
devices, a function of the web application in the non-
native execution environment, wherein the web appli-
cation comprises only a portion of a plurality of execu-
tion dependencies required for execution of the web
application and wherein the web application comprises
one or more partial execution stub (PES) functions
configured to bridge one or more missing execution
dependencies in the plurality of execution dependen-
cies;
detecting, by at least one of the one or more computing
devices, invocation of a PES function in the one or
more PES functions during execution of the function of
the web application, wherein the PES function corre-
sponds to a missing execution dependency in the one or
more missing execution dependencies;
generating, by at least one of the one or more computing
devices, a message comprising current execution infor-
mation of the web application, the current execution
information including an identifier of the PES function
and an identifier of the function of the web application;

transmitting, by at least one of the one or more computing
devices, the message to a trusted module external to the
non-native execution environment via a communica-
tion connection between the PES function and the
trusted module, wherein the trusted module is config-
ured to perform a search for the missing execution
dependency based at least in part on the identifier of the
PES function and the identifier of the function of the
web application; and

receiving, by at least one of the one or more computing

devices, a result of the search from the trusted module
via the communication connection between the PES
function and the trusted module, wherein the result

5

25

30

35

40

45

55

60

20

comprises an execution dependency corresponding to
the missing execution dependency when the search is
successful.
2. The method of claim 1, further comprising:
determining, by at least one of the one or more computing
devices, whether the received result includes the execu-
tion dependency corresponding to the missing execu-
tion dependency, wherein the execution dependency
corresponding to the missing execution dependency
specifies a second function of the web application; and

invoking, by at least one of the one or more computing
devices, the second function based at least in part on a
determination that the received result includes the
execution dependency corresponding to the missing
execution dependency, wherein the second function is
invoked by the PES function.

3. The method of claim 2, wherein the invocation of the
PES function includes one or more parameters and wherein
invoking the second function based at least in part on a
determination that the received result includes the execution
dependency corresponding to the missing execution depen-
dency further comprises:

passing the one or more parameters into the second

function.
4. The method of claim 1, wherein the trusted module is
executed on a native side computing device external to the
one or more computing devices.
5. The method of claim 1, further comprising:
transmitting, by at least one of the one or more computing
devices, a second message including additional current
execution information of to the web application to a
second trusted module external to the non-native
execution environment via a communication connec-
tion between the PES function and the second trusted
module, wherein the second trusted module is config-
ured to perform a verification of the additional current
execution information; and
receiving, by at least one of the one or more computing
devices, result of the verification from the second
trusted module via the communication connection
between the PES function and the second trusted mod-
ule.
6. The method of claim 1, further comprising:
transmitting, by at least one of the one or more computing
devices, the message comprising current execution
information of the web application to a second trusted
module external to the non-native execution environ-
ment via a communication connection between the PES
function and the second trusted module based at least in
part on a determination that the result of the search
from the trusted module indicates that the search was
not performed by the first verification module, wherein
the second trusted module is configured to perform a
search for the missing execution dependency based at
least in part on the current execution information; and

receiving, by at least one of the one or more computing
devices, a result of the search from the second trusted
module via the communication connection between the
PES function and the second trusted module.

7. The method of claim 1, wherein the trusted module is
further configured to perform one or more of: an integrity
check of the current execution information, a cryptographic
operation, or an anti-debug operation.

8. The method of claim 1, wherein the trusted module is
further configured to invoke a mitigation function when the
search for the missing execution dependency is unsuccess-
ful.

US 9,471,776 B2

21

9. The method of claim 1, wherein the non-native execu-
tion environment comprises a java virtual machine and
wherein the trusted module is external to the java virtual
machine.

10. An apparatus for securing execution of a web appli-
cation in a non-native execution environment, the apparatus
comprising:

one or more processors; and

one or more memories operatively coupled to at least one

of the one or more processors and having instructions

stored thereon that, when executed by at least one of the

one or more processors, cause at least one of the one or

more processors to:

execute a function of the web application in the non-
native execution environment, wherein the web
application comprises only a portion of a plurality of
execution dependencies required for execution of the
web application and wherein the web application
comprises one or more partial execution stub (PES)
functions configured to bridge one or more missing
execution dependencies in the plurality of execution
dependencies;

detect invocation of a PES function in the one or more
PES functions during execution of the function of the
web application, wherein the PES function corre-
sponds to a missing execution dependency in the one
or more missing execution dependencies;

generate a message comprising current execution infor-
mation of the web application, the current execution
information including an identifier of the PES func-
tion and an identifier of the function of the web
application;

transmit the message to a trusted module external to the
non-nhative execution environment via a communi-
cation connection between the PES function and the
trusted module, wherein the trusted module is con-
figured to perform a search for the missing execution
dependency based at least in part on the identifier of
the PES function and the identifier of the function of
the web application; and

receive a result of the search from the trusted module
via the communication connection between the PES
function and the trusted module, wherein the result
comprises an execution dependency corresponding
to the missing execution dependency when the
search is successful.

11. The apparatus of claim 10, wherein at least one of the
one or more memories has further instructions stored
thereon that, when executed by at least one of the one or
more processors, cause at least one of the one or more
processors to:

determine whether the received result includes the execu-

tion dependency corresponding to the missing execu-
tion dependency, wherein the missing execution depen-
dency specifies a second function of the web
application; and

invoke the second function based at least in part on a

determination that the received result includes the
execution dependency corresponding to the missing
execution dependency, wherein the second function is
invoked by the PES function.

12. The apparatus of claim 11, wherein the invocation of
the PES function includes one or more parameters and
wherein the instructions that, when executed by at least one
of the one or more processors, cause at least one of the one
or more processors to invoke the second function based at
least in part on a determination that the received result

20

35

40

45

50

55

22

includes the execution dependency corresponding to the
missing execution dependency further cause at least one of
the one or more processors to:

pass the one or more parameters into the second function.

13. The apparatus of claim 10, wherein the trusted module
is executed on a native side computing device external to the
apparatus.

14. The apparatus of claim 10, wherein at least one of the
one or more memories has further instructions stored
thereon that, when executed by at least one of the one or
more processors, cause at least one of the one or more
processors to:

transmit a second message including additional current

execution information of the web application to a
second trusted module external to the non-native
execution environment via a communication connec-
tion between the PES function and the second trusted
module, wherein the second trusted module is config-
ured to perform a verification of the additional current
execution information; and

receive a result of the verification from the second trusted

module via the communication connection between the
PES function and the second trusted module.
15. The apparatus of claim 10, wherein at least one of the
one or more memories has further instructions stored
thereon that, when executed by at least one of the one or
more processors, cause at least one of the one or more
processors to:
transmit the message comprising current execution infor-
mation of the web application to a second trusted
module external to the non-native execution environ-
ment via a communication connection between the PES
function and the second trusted module based at least in
part on a determination that the result of the search
from the trusted module indicates that the search was
not performed by the first verification module, wherein
the second trusted module is configured to perform a
search for the missing execution dependency based at
least in part on the current execution information; and

receive a result of the search from the second trusted
module via the communication connection between the
PES function and the second trusted module.

16. The apparatus of claim 10, wherein the trusted module
is further configured to perform one or more of: an integrity
check of the current execution information, a cryptographic
operation, or an anti-debug operation.

17. The apparatus of claim 10, wherein the trusted module
is further configured to invoke a mitigation function when
the search for the missing execution dependency is unsuc-
cessful.

18. The apparatus of claim 10, wherein the non-native
execution environment comprises a java virtual machine and
wherein the trusted module is external to the java virtual
machine.

19. At least one non-transitory computer-readable
medium storing computer-readable instructions that, when
executed by one or more computing devices, cause at least
one of the one or more computing devices to:

execute a function of the web application in the non-

native execution environment, wherein the web appli-
cation comprises only a portion of a plurality of execu-
tion dependencies required for execution of the web
application and wherein the web application comprises
one or more partial execution stub (PES) functions
configured to bridge one or more missing execution
dependencies in the plurality of execution dependen-
cies;

US 9,471,776 B2

23

detect invocation of a PES function in the one or more
PES functions during execution of the function of the
web application, wherein the PES function corresponds
to a missing execution dependency in the one or more
missing execution dependencies;
generate a message comprising current execution infor-
mation of the web application, the current execution
information including an identifier of the PES function
and an identifier of the function of the web application;

transmit the message to a trusted module external to the
non-native execution environment via a communica-
tion connection between the PES function and the
trusted module, wherein the trusted module is config-
ured to perform a search for the missing execution
dependency based at least in part on the identifier of the
PES function and the identifier of the function of the
web application; and

receive a result of the search from the trusted module via

the communication connection between the PES func-
tion and the trusted module, wherein the result com-
prises an execution dependency corresponding to the
missing execution dependency when the search is suc-
cessful.

20. The at least one non-transitory computer-readable
medium of claim 19, further storing computer-readable
instructions that, when executed by at least one of the one or
more computing devices, cause at least one of the one or
more computing devices to:

determine whether the received result includes the execu-

tion dependency corresponding to the missing execu-
tion dependency, wherein the missing execution depen-
dency specifies a second function of the web
application; and

invoke the second function based at least in part on a

determination that the received result includes the
execution dependency corresponding to the missing
execution dependency, wherein the second function is
invoked by the PES function.

21. The at least one non-transitory computer-readable
medium of claim 20, wherein the invocation of the PES
function includes one or more parameters and wherein the
instructions that, when executed by at least one of the one or
more computing devices, cause at least one of the one or
more computing devices to invoke the second function
based at least in part on a determination that the received
result includes the execution dependency corresponding to
the missing execution dependency communication further
cause at least one of the one or more computing devices to:

pass the one or more parameters into the second function.

22. The at least one non-transitory computer-readable
medium of claim 19, wherein the trusted module is executed
on a native side computing device external to the one or
more computing devices.

10

15

20

25

30

35

40

45

50

24

23. The at least one non-transitory computer-readable
medium of claim 19, further storing computer-readable
instructions that, when executed by at least one of the one or
more computing devices, cause at least one of the one or
more computing devices to:

transmit a second message including additional current
execution information of the web application to a
second trusted module external to the non-native
execution environment via a communication connec-
tion between the PES function and the second trusted
module, wherein the second trusted module is config-
ured to perform a verification of the additional current
execution information; and

receive a result of the verification from the second trusted
module via the communication connection between the
PES function and the second trusted module.

24. The at least one non-transitory computer-readable
medium of claim 19, further storing computer-readable
instructions that, when executed by at least one of the one or
more computing devices, cause at least one of the one or
more computing devices to:

transmit the message comprising current execution infor-
mation of the web application to a second trusted
module external to the non-native execution environ-
ment via a communication connection between the PES
function and the second trusted module based at least in
part on a determination that the result of the search
from the trusted module indicates that the search was
not performed by the first verification module, wherein
the second trusted module is configured to perform a
search for the missing execution dependency based at
least in part on the current execution information; and

receive a result of the search from the second trusted
module via the communication connection between the
PES function and the second trusted module.

25. The at least one non-transitory computer-readable
medium of claim 19, wherein the trusted module is further
configured to perform one or more of: an integrity check of
the current execution information, a cryptographic opera-
tion, or an anti-debug operation.

26. The at least one non-transitory computer-readable
medium of claim 19, wherein the trusted module is further
configured to invoke a mitigation function when the search
for the missing execution dependency is unsuccessful.

27. The at least one non-transitory computer-readable
medium of claim 19, wherein the non-native execution
environment comprises a java virtual machine and wherein
the trusted module is external to the java virtual machine.

#* #* #* #* #*

